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Interactive Probability Models: Inverse Problems
on the Sphere

Sven Aerts1

Received July 4, 1997

We expose a class of probabilistic models with only two outcomes that we call
interactive probability models for the analysis of data that arise in situations
where there is influence of the measurer on the measured. We reconstruct a Borel
measure corresponding to possible sets of probabilities that are related to outcomes
of experiments. We give three examples: one that corresponds to the quantum
mechanical case, one to a deterministic measurement, and one to a situation where
the outcome of the measurement is determined by the measurement apparatus only.

1. INTRODUCTION

It is well known that in Kolmogorovian probability theory the origin of

the probabilities is due to a lack of knowledge about the precise state of the
entity under observation. This scheme turns out to be too narrow to contain

quantum mechanics. Indeed, it was shown that the introduction of so-called

hidden variables into quantum mechanics allows for dispersionless states and

that, in restoring the Kolmogorovian character, we simultaneously destroy

the quantum character. Another approach was formulated (D. Aerts, 1986,

1987) where the quantum character is due to a lack of knowledge about
the precise interaction between the entity that is being measured and the

measurement apparatus. A model for a measurement with only two outcomes

was introduced that could generate a very broad spectrum of probabilities.

It was shown, for example, that one can generate the same probabilities as

a two dimensional Hilbert-space model, and, by varying a parameter called

(D. Aerts et al., 1993), one is able to recover probabilities that one can
identify as being derivable within a standard Kolmogorovi an framework (S.

Aerts, 1996). The parameter P in this model was introduced ad hoc: it
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produced the correct probabilities and could be interpreted as a measure of

the interaction between the apparatus and the entity under observation. In

this article we want to follow an opposite strategy: given the probabilities
and the sphere model, what can we deduce about the underlying interactional

measure? In order to do so, we first present a slightly modified version of

the sphere model.

2. THE MODEL

Let the entity we wish to study be represented by a point on the unit

sphere. The experimenter wishes to obtain information about the location of

the entity on the sphere. Because we want to model different types of lack
of knowledge, we will severely restrict the informational access the experi-

menter has to the experimental setup. The only way he can obtain knowledge

about the entity is to resort to the following experiment. He attaches an elastic

on two diametrically opposite points (which he might call up and down) of

the sphere in the direction u. The entity (which is in a direction we will

denote by the vector v) is then projected orthogonaly onto the elastic. Then
the elastic breaks somewhere, dragging the entity along the direction u to

one of the two endpoints ( 1 u or 2 u) of the elastic. If the entity is dragged

towards the upper point 1 u, the experimenter gives the experiment eu the

outcome 1 1, otherwise he gives the experiment the outcome 2 1. The proba-

bility P (eu 5 1 1 | v) that the above experiment leads to the result 1 1 for a

measurement where the elastic is in the direction u and the entity in the
direction u equals the probability P ( t ) that the elastic breaks between 2 1

and the projection u ? v 5 t P [ 2 1, 1 1] and as such is a measure

t j P ( t ) 5 m ([ 2 1, t ]) (1)

3. RECONSTRUCTION OF AN UNDERLYING BOREL
MEASURE

Given the probability P (eu 5 1 1 | v) 5 P ( t ) of the outcome 1 1 of an

experiment eu if the state of the entity is characterized by the vector v, the

question we want to raise is to what extent this probability P ( t ) determines

the Borel measure m on the interval [ 2 1, 1 1] (which represents the elastic).

To answer this question we will use the Lebesgue decomposition of P ( t )
(see, for example, Rao, 1987), which states that any bounded monotone

function P: R ® R can be uniquely expressed as

P ( t ) 5 Pa( t ) 1 Ps( t ) 1 Pd( t ), t P R (2)

where Pa is an absolutely continuous, monotone increasing function, Ps a

singularly continuous function, and Pd is discontinuous increasing, i.e.,
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Pd( t ) 5 ( i , t ai. Moreover, Pa has at most a countable number of nonzero

terms and is absolutely convergent. Note that this decomposition of the

probability corresponds to a decomposition of the underlying Borel set such
that Pa corresponds to point measures, Ps accounts for a thin subset (i.e., has

measure zero) of the Borel set, and Pa corresponds to a density function in

the following sense: according to the Lebesgue±Vitali theorem, a function f :
[a, b] ® R is absolutely continuous iff it admits an integral representation

f (x) 5 f (a) 1 #
x

a

f 8(t) dt (3)

where f 8 is the derivative of f which exists at almost all points of [a, b] and

is Lebesgue integrable on the interval [a, b]. In our case Pa is absolutely
continuous and we will call P 8a( t ) 5 r ( t ) the density function corresponding

to P ( t ). Since Pd has at most a countable number of nonzero terms and the

derivative of a singular function is zero almost everywhere by definition,

we have

P8( t ) 5 P 8a( t ) 5 r ( t ) (4)

for almost all t P [ 2 1, 1 1].

3.1. Some Examples

We will apply the above decomposition to three types of measurement.

The probabilities that one encounters in these three situations are all bounded

and monotone and thus we can apply the Lebesgue decomposition theorem (2).

1. The first type of measurement we want to model is what we could
call an observation. For a measurement to be an observation, we require that

it be deterministic, that is, the probability related to an outcome equals one

or zero. We will cut the sphere into two hemispheres S1 and S2 by means of

a plane that is perpendicular to the line through 1 u and 2 u and that intersects

this line at a point that can fixed with a parameter g P [ 2 1, 1 1]. Let S1 be
the hemisphere that contains 1 u. We will assume that P(eu 5 1 1 | v) shifts

from zero to one as soon as the projection of the entity on the elastic exceeds

g , that is, if t . g . In this case the outcome eu 5 1 1 really means the entity

was in the hemisphere S1, explaining the name `observation.’ With h (x) the

Heaviside or unit step function [h (x) [ 0 iff x , 0, h (x) [ 1 iff x $ 0], we

can write

P ( t ) 5 Pd( t ) 5 h ( t 2 g ) (5)

According to equation (4), P8( t ) 5 0 almost everywhere. Sine Ps 5 Pa 5 0
in this case, the only candidate for m is a point measure located at g :

m 5 d ( t 2 g ) (6)
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2. For the second example we turn to the following question: what

possible Borel measure allows us to recover the quantum mechanical probabil-

ity related to a spin measurement of a spin-1/2 entity prepared in a state v,
measured with a Stern±Gerlach apparatus that makes an angle a with v, as

P (eu 5 1 1 | v) 5 cos2 1 a2 2 5
1 1 cos( a )

2
(7)

With t 5 cos( a ), we can relate the probability in equation (7) to t :

P ( t ) 5 Pa( t ) 5
1 1 t

2
(8)

with [a,b] 5 [ 2 1, 1 1] and f (a) 5 0, we can apply the Lebesgue±Vitali

theorem (3). We see that the probability is an absolute continuous function

of t , hence it allows for a density function:

m 5 P8( t ) 5
1

2
(9)

The fact that a constant density function equal to 1/2 reproduces the quantum

mechanical probability has long been known (D. Aerts, 1986). We have now

proven that it is the only density (up to a Borel set with Lebesgue measure

zero) on [ 2 1, 1 1] that generates the probabilities of a two-dimensional Hilbert
space model.

3. The third type of measurement could be called a solipsistic measure-

ment because we demand that the results be determined by the apparatus or,

equivalently, that the probability is independent of the state of the entity for

almost all t . Thus, with a P [0,1] we have P (eu 5 1 1 | v) 5 a for v Þ | u | ,
P (eu 5 1 1 | v) 5 1 for v 5 u, and P (eu 5 1 1 | v) 5 0 for v 5 2 u. According

to equation (4), the solution is zero almost everywhere, except for the end-

points of the elastic. Hence, P ( t ) 5 Pa( t ) and the only allowable m is

concentrated in two point measures: one located at 2 1 and one at 1 1, or,

with the use of the Dirac distribution,

m 5 a ? d ( t 1 1) 1 (1 2 a) ? d ( t 2 1) (10)

4. CONCLUSION

We have reconstructed a Borel measure corresponding to the outcome
probabilities as a function of the projection. We have given three types of

measurement this model can handle: an observation where the result of

the measurement is only dependent on the state of the entity; a solipsistic

measurement, where the result is only dependent on the measurement appara-
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tus, and the quantum measurement, where the outcome is dependent on both

the state and the apparatus.
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